
Engineering Structures 22 (1999) 513–524
www.elsevier.com/locate/engstruct

Seismic response reduction of irregular buildings using passive
tuned mass dampers

Chi-Chang Lin*, Jin-Min Ueng, Teng-Ching Huang
Department of Civil Engineering, National Chung-Hsing University, Taichung, Taiwan, ROC, 40227

Received 13 January 1998; received in revised form 23 April 1998; accepted 24 April 1998

Abstract

This paper illustrates the practical considerations and vibration control effectiveness of passive tuned mass dampers (PTMDs)
for irregular buildings, modelled as multi-storey torsionally coupled shear buildings, under bi-directional horizontal earthquake
excitations. The PTMD is designed to control the mode which makes most contribution to the largest response of the building. Its
optimum installation location and moving direction are determined from the controlled mode shape values. The optimal system
parameters of PTMD are then calculated by minimizing the mean-square modal displacement response ratio of controlled mode
between the building with and without PTMD under earthquake excitation from critical direction. As two PTMDs are used to
reduce both translational responses, this study arranges the two mass dampers to achieve the largest vibration reduction. Numerical
and statistical results from a long and a square five-storey torsionally coupled buildings subjected to five real earthquakes from
different incident angles verify that the proposed optimal PTMDs are able to reduce the building responses effectively. 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Through intensive research and development in recent
years, the passive tuned mass damper (PTMD) has been
accepted as an effective vibration control device for both
new structures and existing structures to enhance their
reliability against winds, earthquakes, and human activi-
ties [1–12]. PTMDs can be incorporated into an existing
structure with less interference compared with other
passive energy dissipation devices. Since 1971, many
PTMDs have been successfully installed in high-rise
buildings and towers in the world (for example, the Cit-
icorp Center in New York City, the John Hancock Build-
ing in Boston, USA; the Sydney Tower in Sydney, Aus-
tralia; the Crystal Tower Building in Osaka and many
observatory towers in Japan) and reported to be able to
reduce wind-induced vibrations significantly. The deter-
mination of optimal system parameters (i.e. the mass,
damping and stiffness coefficients) of a PTMD to
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decrease structural vibrations induced by different types
of excitations is now well established [13–17]. The
effectiveness of a single PTMD is decreased by its
detuning frequency and off-optimum damping. In more
recent studies [18–24], multiple tuned mass dampers
(MTMDs) with distributed natural frequencies near the
fundamental frequency of the main structure were pro-
posed to improve the vibration control effectiveness.
Almost all of these studies considered the controlled
structure as a single degree-of-freedom (SDOF) system
with its fundamental modal properties to design the
PTMD and MTMDs. However, a real building usually
possesses a large number of degrees of freedom and is
actually asymmetric to some degree even with a nomin-
ally symmetric plan. It will undergo lateral as well as
torsional vibrations simultaneously under purely trans-
lational excitations. Thus, the simplified SDOF system
which ignores the structural lateral–torsional coupling
and the PTMD effect on different modes could overesti-
mate the control effectiveness of PTMD [23]. In
addition, it is well known that the vibration control of
structures using PTMD is mainly attributed to the sup-
pression of controlled modal responses. The previous
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studies determined the system parameters of PTMD
based on this general concept. However, it is found in
this paper that the vibration control effectiveness of a
PTMD depends not only on the controlled modal para-
meters of the primary structure but also on the installed
location and moving direction of the PTMD as well as
the earthquake direction. Therefore, for a torsionally
coupled real structure, the previously simplified model
may lead to incorrect design of PTMD and overestim-
ation of its vibration control effectiveness.

This study deals with the optimal installed floor,
planar position and moving direction of PTMDs for
irregular buildings under incident horizontal earthquake
excitations. The building is modelled as a multi-storey
torsionally coupled shear building with one rotation and
two translations for each floor. The critical seismic inci-
dent angle to certain DOF of the building is determined
such that its mean-square response under random exci-
tation is maximum. The PTMD is designed to control
the mode which makes most contribution to the largest
response of the building. Its optimum installation
location and moving direction are determined from the
mode shape values of controlled mode. The optimal sys-
tem parameters of PTMD are then calculated by minim-
izing the mean-square modal displacement response
ratio of controlled mode between the building with and
without PTMD under earthquake excitation from critical
direction. As two PTMDs which have the same total
mass as one PTMD are used to reduce both translational
responses, this study arranges the two mass dampers to
achieve the largest vibration reduction. Performance of
the proposed optimal PTMDs is demonstrated by
numerical and statistical studies of a long and a square
five-storey torsionally coupled buildings subjected to
five real earthquakes from various incident angles.

2. Dynamic equation of building TMD systems

With reference to the building idealization consisting
of rigid floors supported on massless axially inextensible
columns and walls, the general torsionally coupled
multistorey buildings as shown in Fig. 1 have the follow-
ing features: (1) the principal axes of resistance for all
the stories are identically oriented, along thex and y-
axes shown; (2) the centers of mass of the floors do not
lie on a vertical axis; (3) centers of resistance of the
stories do not lie on a vertical axis, either, i.e. the static
eccentricities at each storey are not equal; (4) all floors
do not have the same radius of gyrationr about the verti-
cal axis through the center of mass; and (5) ratios of the
three stiffness quantities—translational stiffness inx and
y directions and torsional stiffness—for any storey are
different.

For the above general torsionally coupledN-storey
building, each floor has three degrees of freedom:x- and

Fig. 1. N-storey general torsionally coupled building TMD system.

y-displacements, relative to the ground, of the center of
mass and rotation about a vertical axis. For floorl, they
are denoted byxl, yl and ul, respectively. Assumed that
a SDOF PTMD of mass,msy, damping coefficient,csy

and stiffness,ksy, is installed at thelth floor with the
distance ofdy to y-axis of lth floor, and moving iny
direction. The dynamic equation of motion of the com-
bined building TMD system under an incident horizontal
earthquake excitation (incident angleb from x direction)
can be written as
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In Eq. (1), M 5 diag(M1 M2… M l… MN) 5 3N 3
3N mass matrix of building,M l 5 diag (ml ml ml) 5 3
3 3 mass submatrix,ml is the lumped mass of floorl.
Similarly, K 5 3N 3 3N stiffness matrix of building and
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are the stiffness submatrices, wherekxl
,kyl

and kul
are

translational and rotational stiffnesses of storeyl; exl,l

andexl,l 1 1
denote the static eccentricites inx-axis at floor

l with respect to storeyl and l 1 1, respectively; andrl

is the radius of gyration of floorl. uT 5 [x1 y1 r1u1… xl

yl rlul… xN yN rNuN]T and usy denotes the displacement
vector of primary structure and the PTMD displacement
relative to base, respectively;T is the matrix transpose
operator. rT 5 [cosb sinb 0 cosb sinb 0…]T is the
ground influence coefficient vector;üg represents the
incident earthquake ground acceleration; andyy 5 dy/rl.
Assumed thatC is a classical damping matrix, the equ-
ation of motion of ith mode of controlled structure is
expressed as
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In Eq. (2),ysy 5 usy 2 (yl 1 dyul) is the displacement
of PTMD relative to thelth floor, or say PTMD’s stroke;
m*

i and hi are theith generalized modal mass and dis-
placement;vsy 5 √ksy/msy and jsy 5 csy/(2msyvsy) rep-
resent the natural frequency and damping ratio of
PTMD, respectively.f3l−l,i denotes the (3l 2 1)th
element ofith mode shapefi. Fk is the kth element of
force vectorF in Eq. (1). Define

miy 5 (f3l 2 1,i 1 yyf3l,i)
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whereriy 5 f3l 2 1,i(msy/m*
i ) denotes theith modal mass

ratio of PTMD. Then, Eq. (2) can be rewritten as



516 C.-C. Lin et al. /Engineering Structures 22 (1999) 513–524
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Similarly, the equation of motion of PTMD in Eq.
(1) becomes
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wheref *
s 5 fs/msy. Provided that the PTMD is designed

to tune theith mode of controlled structure, from Eqs.
(4) and (5), the equations of motion forith mode and
PTMD are expressed in matrix form as
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where Gi 5 (fT
i Mr )/(fT

i Mfi) is the ith modal partici-
pation factor. It has been proved that as the primary
structure has no lateral–torsional coupling, Eq. (6) is
reduced to the same form as that of previous studies
[1,25]. For the case of primary structure without PTMD,
its ith modal equation of motion is given as

ḧi 1 2jiviḣi 1 v2
i hi 5 2 Giüg (7)

The comparison of structural modal responses in Eqs.
(6) and (7) leads to the determination of optimal
PTMD’s system parameters and vibration control effec-
tiveness of PTMD.

3. Optimal system parameters of PTMDs

According to Eqs. (6) and (7), the optimal PTMD’s
parameters are determined by minimizing the mean-
square displacement response ratio of theith tuned mode
(or say controlled mode),RdE,i, between the structure
with and without installation of PTMD under an incident
horizontal earthquake excitation.RdE,i takes the form as

RdE,i 5
E[h2

i ]TMD

E[h2
i ]NOTMD

5
A
B

(8)

in which

A 5 4jij
3
syr3

fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

1 4j2
i j

2
syr4

fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

1 4j3
i jsyr3

fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

1 4j2
i j

2
syr2

fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

2 jijsyr3
fy(G2

i 2 r2
iy(1 1 ny(f3l,i/f3l 2 1,i))2)

(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

2 jijsyr3
fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

1 G2
i jijsyrfy 1 j2

i r2
fy(riy(1 1 ny(f3l,i/f3l 2 1,i)))2

1 jijsyr5
fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)2

1 j2
i r4

fy(Gi 1 riy(1 1 ny(f3l,i/f3l 2 1,i)))2

(riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

B 5 4G2
i jij

3
syr3

fy(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

1 4G2
i j

2
i j

2
syr2

fy

1 G2
i j

2
syr2

fy(riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

1 4G2
i j

2
i j

2
syr4

fy(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

1 G2
i jijsyrfy 1 4G2

i j
3
i jsyr3

fy 2 2G2
i jijsyr3

fy

1 G2
i j

2
i r4

fy(riyf3l 2 1,i(1 1 ny(f31,i/f3l 2 1,i))2)2

1 G2
i jijsyr5

fy(1 1 riyf3l 2 1,i(1 1 ny(f3l,i/f3l 2 1,i))2)

where rfy 5 vsy/vi is defined as the frequency ratio of
PTMD to the controlled mode. Owing to the magnitude
of elements,fk,i, in mode shape vectorfi is relative,
the valueRdE,i depends onfk,i. If fi is selected to nor-
malize the ith effective modal mass Mi 5

( O3N

k 5 1

fk,imkrk)2/ O3N

k 5 1

f 2
k,imk, RdE,i becomes independent of

fk,i, andGi is reduced to 1.0. Under this definition, the
modal mass ratioriy in Eq. (3) has a definite physical
meaning and its expression becomesriy 5 (f3l−1,imsy)Mi.

The value ofRdE,i smaller than unity represents the
attenuation of structural responses due to the presence
of PTMDs. It can be seen from Eq. (8) thatRdE,i equals
to unity asyy 5 ( 2 f3l−1,i/f3l,i). That means no vibration
reduction. This finding indicates the importance of the
considerations of lateral–torsional coupling effect and
the installation location of PTMDs.

It is also seen from Eq. (8) thatRdE,i is a function of
the controlled modal parameters (ji andfi), the PTMD’s
system parameters (riy, jsy and rfy), the installed floor
(f3l−1,i, f3l,i), moving direction and planar position (yy)
of PTMD, as well as the seismic incident angleb. For
an existing building, when the controlled modal para-
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meters, the installed floor, planar position and moving
direction of PTMD, and the seismic incident angleb
are known or given (to be discussed later), the optimal
PTMD’s system parameters can be obtained by differen-
tiating RdE,i with respect toriy, rfy and jsy equating to
zero, respectively, to minimizeRdE,i. Their values may
be found by solving the following simultaneous equa-
tions

∂RdE,i

∂riy

5 0,
∂RdE,i

∂rfy

5 0,
∂RdE,i

∂jsy

5 0 (9)

It has been found by Lin and colleagues [16,25] that
an optimal modal mass ratio, (riy)opt exists, but is rarely
used due to economic considerations. Hence, in general,
we find out (rfy,jsy)opt for various values ofriy and then
search for (riy)opt. As mentioned in preceding sections,
prior to the determination of the optimal PTMD’s design
parameters from Eq. (9), we must first determine (i) the
controlled structural mode; (ii) the installed floor, mov-
ing direction and planar position of PTMD, and (iii) the
critical seismic incident anglebcr. These factors play
very important roles in optimum design of PTMDs and
their control efficacy.

3.1. Controlled modes

As seen in the theoretical development, it is obvious
that a PTMD is optimally designed to control the mode
which makes the most contribution to a specified
response of the primary structure. For a torsionally
coupled shear building, the first three modes are the most
important to the translational and torsional responses of
each floor. However, the translations inx and y direc-
tions have different dominant modes. It is even possible
to reduce the dynamic responses of all degrees of free-
dom using one PTMD, but this PTMD will not be the
optimal one to every degree of freedom. In general, the
conventional design of a PTMD is to reduce the largest
response, which may cause damage, of the primary
structure. Therefore, the dominant mode to the largest
structural response is selected as the controlled mode
of PTMD.

3.2. Installed floor, moving direction and planar
position of PTMD

It has been shown by Lin et al. [25] for planar build-
ings that the floor corresponding to the tip of controlled
mode shape will be the optimum location for PTMD,
because more response reduction can be achieved. Simi-
larly, for a torsionally coupled building, the terms of
f3l−1,i andyy in Eq. (6) clearly denote the installed floor
l, moving directiony, or say DOF (3l 2 1), and planar
positiondy. Therefore, the optimum installation floor and

planar position of PTMD can be determined by means
of maximizing the absolute values of (f3l−1,i 1 yyf3l,i)
for moving iny direction or (f3l−2,i 1 yxf3l,i) for moving
in x direction. To achieve this, the following steps are
suggested: (i) choose the floor which has the largest
mode shape value in controlled mode as the installed
floor; (ii) choose the degree of freedom of the largest
response as the moving direction of PTMD; (iii) the
absolute value of (f3l−1,i 1 yyf3l,i) depends on the sign
of translation (f3l−1,i or f3l−2,i) and rotation (f3l,i) mode
shape values. When both mode shape values have the
same signs, we choose the maximum positive value of
yy or yx allowable in the installed floor. On the other
hand, whenf3l−1,i or f3l−2,i andf3l,i have opposite signs,
we chooseyy or yx to be the maximum negative value.
Through the above steps, it is concluded that the greater
the distance between PTMD and the mass center of the
installed floor, the more vibration reduction is obtained.

3.3. Critical seismic incident angle

The dynamic responses of a torsionally coupled build-
ing also depend on the incident angle of earthquake exci-
tation. To design optimal PTMDs, it is essential and
necessary to find the critical seismic incident angle
which induces the largest structural responses. In this
paper, the critical seismic incident angle,bcr, is determ-
ined such that the mean-square response of the desired
controlled degree of freedom is maximum. For anN-
storey existing building, when only the firstnID modal
parameters are known by modal parameter identification
techniques [25], its mean-square displacement response
in y direction of top floor is expressed as

E[y2
N] 5 E

`

0

u OnID

k 5 1

2 1
m*

k

[( 2 v2 1 2ijkvkv (10)

1 v2
k)−1· (fT

kMr )]f3N 2 1,ku2sinbSüg
(v)dv

where Süg
(v) is the power spectral density of earth-

quake input.

4. Optimal design of second PTMD

According to above design procedure for one PTMD,
the response of controlled DOF is reduced. Since this
PTMD is designed based on the dominant modal proper-
ties of this DOF and its corresponding seismic incident
angle, its capability in reducing the responses of other
DOFs under an earthquake from different angles should
be further investigated. It is found in this paper that
whether additional PTMDs are required depends upon
the degree of coupling among DOFs. For instance, a
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square building with nearly equal stiffnesses and small
static eccentricities inx andy directions has slight coup-
ling in x andy responses even though both translational
frequencies are close. One PTMD designed for reducing
y responses is not able to decreasex responses if an
earthquake is applied from the critical incident angle of
x responses and vice versa. Under this circumstance, a
second PTMD becomes necessary.

Assumed that a second PTMD with massmsx, damp-
ing csx, and stiffnessksx, is also mounted at thelth floor
of the N-storey torsionally coupled building to tune the
jth mode and moving inx direction. The equations of
motion for thejth mode and two PTMDs are expressed
in matrix form as

3 1 0 0

(f3l 2 2,j 1 yxf3l,j ) 1 0

(f3l 2 1,j 1 yyf3l,j ) 0 1
45 ḧj

n̈sx

n̈sy
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0 2jsxvsx 0

0 0 2jsyvsy

45 ḣj

ṅsx

ṅsy

6 (11)

1 3v2
j 2 mjxv

2
sx 2 mjyv

2
sy

0 v2
sx 0

0 0 v2
sy

45hj

nsx

nsy

6 5

2 5 Gj

cosb

sinb
6üg

By matrix partition, Eq. (11) is separated into the fol-
lowing two expressions

F 1 0

(f3l 2 2,j 1 yxf3l,j ) 1
GHḧj

n̈sx
J

1 F2jj vj 2 mjx(2jsxvsx)

0 2jsxvsx
GHḣj

ṅsx
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0
J 1 Fv2
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2
sx

0 v2
sx

GHhj
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J

1 H 2 mjyv
2
synsy

0
J 5 2 H Gj
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Jüg

(f3l 2 1,j 1 yyf3l,j )ḧj 1 n̈sy 1 2jsyvsyṅsy (13)

1 v2
synsy 5 2 sinbüg

Taking Fourier transform of Eqs. (12) and (13) and
substituting Eq. (13) into Eq. (12), we obtain the equ-
ation of motion of thejth mode and the second PTMD as

F 2 v2 1 2ivjj vj 1 v2
j 1

v2( 2 2ivmjyjsyvsy 2 mjyv
2
sy)

2 v2 1 2ivjsyvsy 1 v2
sy

(f3l 2 1,j 1 yyf3l,j )

2 v2(f3l 2 2,j 1 yxf3l,j )

G

F 2 2ivmjxjsxvsx 2 mjxv2
sx

2 v2 1 2ivjsxvsx 1 v2
sx

GHhj (iv)

nsx(iv)
J 5 (14)

2 HGj 1 sinb
2 2ivmjyjsyvsy 2 mjyv2

sy

2 v2 1 2ivjsyvsy 1 v2
sy

cosb

Jüg(iv)

In Eq. (14),hj(iv) denotes the Fourier displacement
response of thejth mode of a building with two PTMDs.
As Eqs. (8)–(10), the optimal system parameters of the
second PTMD are determined by minimizing the mean-
square displacement response ratio of thejth mode,RdE,j,
between the building with two PTMDs and with one
PTMD under an incident horizontal earthquake from the
critical angle ofx responses,bcr,x.

5. Numerical verifications

Two five-storey torsionally coupled buildings are
presented to demonstrate the new design procedure and
vibration control effectiveness of proposed optimal
PTMDs. The first building (B1) has relative weak stiff-
nesses iny direction compared with those inx direction
for each floor such as a long building. The second build-
ing (B2) has nearly equal stiffnesses inx and y direc-
tions. Tables 1 and 2 list their physical system para-
meters and first three modal frequencies, damping ratios
and mode shapes. It is seen that the modal orders arey
2 u 2 x and y 2 x 2 u for B1 and B2, respectively.
In addition, B2 possesses close translational modes
which will cause unnegligible interaction between two
modes. The total mass ratio of either one PTMD or two
PTMDs to building total mass, is set to be 2% in the
following numerical examples.

5.1. First PTMD

Becausey direction is weak for both buildings,y
direction of top floor is the controlled DOF and the first
mode is thus the controlled mode. According to Eq. (10),
the critical seismic incident angles of top floor displace-
ment in y direction for both buildings are found to be
96° and 91° as shown in Figs. 2 and 3. Following the
proposed design concept, the first PTMD is installed at
the top floor, moving iny direction to reduce the first
modal displacement under earthquake fromb 5 96° or
91°. Since f14,1 and f15,1 have different signs (i.e.2
32.096 and 14.454 for B1 and2 5.234 and 2.578 for
B2), yy is chosen to be2 1.25 which corresponds tody

5 2 10 m in opposite side of the resistance center for
both buildings. The optimal PTMD’s system parameters
are then calculated by Eq. (9) and listed in Table 3.

The variation of mean square displacement response



519C.-C. Lin et al. /Engineering Structures 22 (1999) 513–524

Table 1
The physical system parameters of B1 and B2

Building Floor massm Storey stiffness Storey eccentricity (m) Radius of
(kg) gyration (m)

kx (N/m) ky (N/m) ku (N-m) ex ey

B1 1F 2.03 105 9.0 3 107 5.4 3 107 4.5 3 109 2.0 1.0 8.0
2F 1.83 105 8.0 3 107 4.8 3 107 4.2 3 109 2.0 1.0 8.0
3F 1.63 105 7.0 3 107 4.2 3 107 3.9 3 109 2.0 1.0 8.0
4F 1.43 105 6.0 3 107 3.6 3 107 3.6 3 109 2.0 1.0 8.0
5F 1.23 105 5.0 3 107 3.0 3 107 3.3 3 109 2.0 1.0 8.0

B2 1F 2.03 105 5.4 3 107 5.3 3 107 4.5 3 109 1.0 1.0 8.0
2F 1.93 105 5.0 3 107 4.9 3 107 4.2 3 109 1.0 1.0 8.0
3F 1.83 105 4.5 3 107 4.4 3 107 3.9 3 109 1.0 1.0 8.0
4F 1.73 105 4.0 3 107 3.9 3 107 3.5 3 109 1.0 1.0 8.0
5F 1.63 105 3.5 3 107 3.5 3 107 3.2 3 109 1.0 1.0 8.0

Table 2
The first three modal properties of B1 and B2

Mode shapes v (Hz) j (%)

x direction y direction ru direction

Building B1 B2 B1 B2 B1 B2 B1 B2 B1 B2

Mode 1 0.769 0.730 2.00 2.00

3
1.00

1.987

2.863

3.533

3.907

4 3
1.000

1.988

2.890

3.608

4.026

4 3
2 7.894

2 15.848

2 23.086

2 28.786

2 32.096

4 3
2 1.298

2 2.583

2 3.761

2 4.700

2 5.234

4 3
3.892

7.636

10.851

13.206

14.454

4 3
0.659

1.305

1.877

2.327

2.578

4
Mode 2 0.980 0.758 2.00 2.00

3
1.000

2.005

2.918

3.635

4.050

4 3
1.000

1.988

2.894

3.615

4.037

4 3
0.599

1.228

1.830

1.330

2.636

4 3
0.803

1.597

2.328

2.912

3.244

4 3
1.186

2.322

3.292

3.998

4.370

4 3
0.073

0.145

0.209

0.259

0.287

4
Mode 3 1.105 0.910 2.04 2.04

3
1.000

2.022

2.969

3.731

4.182

4 3
1.000

1.994

2.923

3.668

4.114

4 3
2 0.211

2 0.442

2 0.674

2 0.876

2 1.004

4 3
2 0.934

2 1.865

2 2.738

2 3.442

2 3.849

4 3
2 0.844

2 1.650

2 2.335

2 2.830

2 3.090

4 3
2 3.566

2 7.055

2 10.142

2 12.566

2 13.919

4

Table 3
Optimal system parameters of first PTMD for B1 and B2

Building Controlled mode Mass ratio (%)js (%) gf Installed floor Moving direction yy

B1 Mode 1 2 14.0 0.91 5F y 2 1.25
B2 Mode 2 2 12.0 0.93 5F y 2 1.25
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Table 4
Reduction of peak and root-mean-square responses of B1 under five real earthquakes

Earthquake Peak response RMS response

x5 (cm) y5 (cm) (ru)5 (cm) x5 (cm) y5 (cm) (ru)5 (cm)

El Centro (1940) 6.39 23.10 14.24 1.05 4.96 2.45
(3.93) (15.75) (8.37) (0.71) (2.69) (1.29)

Taft (1952) 5.52 17.15 8.55 1.00 3.13 1.60
(3.79) (13.56) (6.28) (0.78) (1.74) (0.94)

San Fernando (1971) 2.21 6.31 4.59 0.37 0.95 0.65
(1.62) (5.46) (3.18) (0.29) (0.76) (0.51)

Mexico (1985) 30.54 77.61 52.44 7.10 19.02 11.60
(11.50) (40.37) (29.78) (5.16) (8.83) (6.96)

Kobe (1995) 6.54 22.17 11.55 1.32 4.88 2.46
(5.02) (15.85) (7.94) (0.94) (2.36) (1.24)

(•) Responses with one PTMD.

Fig. 2. Top floor mean-square displacement response of B1 with and
without PTMD.

Fig. 3. Top floor mean-square displacement response of B2 with and
without PTMD.
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Fig. 4. Top floor displacement transfer function for B1 asb = 96°.

of top floor with b is shown in Fig. 2 for B1 with and
without PTMD. It is seen that all responses (particularly
y response) are reduced for earthquakes from any inci-
dent angle. Thus, it is concluded that one optimal PTMD
is adequate for the first type buildings. Fig. 4 depicts the
transfer functions forb 5 96°. It is apparent that the
first modal amplitude in all three directional responses
is suppressed significantly which agrees with the theor-
etical results. A statistical study is performed for B1
under five normalized (PGA5 0.3 g) real earthquakes,
i.e. El Centro (1940), Taft (1952), San Fernando (1971),
Mexico (1985) and Kobe (1995) fromb 5 96°. Table

Table 5
Optimal system parameters of two PTMDs for B2

PTMD Controlled mode Mass ratio (%) js (%) gf Installed floor Moving direction yx or yy

First Mode 1 1 8.0 0.96 5F y 2 1.25 (yy)
Second Mode 2 1 6.0 0.99 5F x 1.25 (yx)

Fig. 5. Top floor displacement response of B1 under scaled-down
Kobe earthquake fromb = 96°.

4 lists the reductions of top floor peak and root-mean-
square displacements with and without PTMD. Fig. 5
shows the time history displacement responses of the top
floor under Kobe earthquake. As we expect, both peak
and root-mean-square responses are reduced up to 40%.
However, it is found in Fig. 3 that the top floor mean
square displacement of B2 inx direction increases as
b 5 (0–45)° and (145–180)°. This is attributed to the
amplification of its dominant modal response (mode 2)
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Fig. 6. (a) Top floor displacement transfer function for B2 asb = 9°. (b) Top floor displacement transfer function for B2 asb = 91°.

Table 6
Peak responses of B2 under scaled-down Kobe earthquake

b 5 9° (bcr,x5) b 5 91°(bcr,y5)

x5 (cm) y5 (cm) (ru)5 (cm) x5 (cm) y5 (cm) (r0)5 (cm)

Uncontrolled 22.95 9.60 6.16 9.14 23.86 7.22
One PTMD 23.62 5.31 5.48 4.02 16.31 5.51

( 1 3%) ( 2 45%) ( 2 11%) ( 2 56%) ( 2 32%) ( 2 24%)
Two PTMDs 17.08 5.86 4.21 4.32 18.75 4.61

( 2 26%) ( 2 39%) ( 2 32%) ( 2 53%) ( 2 21%) ( 2 36%)

after the installation of first PTMD. As observed in the
preceding section, B2 has low coupling among three
DOFs of each floor. Therefore, a second PTMD is
required.

5.2. Second PTMD

To compare the vibration control effectiveness using
one PTMD and two PTMDs, the same total mass of
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PTMD is used for both cases. Through detailed numeri-
cal studies, we found that two PTMDs with equal mass
will give the best control performance. The optimal
locations and system parameters of two PTMDs for B2
are shown in Table 5. Fig. 6 illustrates the transfer func-
tions of top floor displacement for B2 with one and two
PTMDs under earthquakes from 9° (bcr,x5) and 91°
(bcr,y5). The corresponding time history responses under
scaled-down 1995 Kobe earthquake fromb 5 9° are
given in Fig. 7. Their peak responses are summarized
in Table 6. The number in parenthesis (•) denotes the
percentage of response reduction. It is seen thatx5 ampli-
fies when only one PTMD is used iny direction. The fact
of tremendous reduction of peak and root-mean-square
responses again reveals the necessity and importance of
the second PTMD.

Fig. 7. Top floor displacement response of B2 under scaled-down Kobe earthquake fromb = 9°.

6. Conclusions

This paper deals with the optimum installation
location in plan and in elevation and moving direction
of PTMDs for multi-storey torsionally coupled buildings
under incident horizontal earthquake excitations. The
optimal PTMD’s system parameters are calculated by
minimizing the mean-square total modal displacement
response ratio of controlled mode between the building
with and without PTMD under the earthquake excitation
from critical direction. From theoretical developments
and numerical results, the following conclusions are
drawn: (1) the critical seismic incident angle is determ-
ined such that the mean-square response of the desired
controlled DOF is maximum; (2) the dominant mode of
desired controlled DOF is assigned as the controlled
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mode of PTMD; (3) the floor corresponding to the tip
of controlled mode shape is the optimum installed floor
of PTMD; (4) the moving direction of PTMD is the same
as the controlled DOF; (5) the greater the distance
between PTMD and mass center of the installed floor,
the more vibration reduction; (6) one PTMD is adequate
in reducing both translations and rotation of long build-
ings under earthquakes from any incident angle. How-
ever, a second PTMD is required for buildings with
nearly equal stiffness inx and y directions. Numerical
and statistical results of a long and a square five-storey
torsionally coupled building under five real earthquakes
agree well with those of theoretical development.
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